Help Desk -
9958816305, 9810335381
Email
Password

Volkswagen Details Battery System for ID.3

Auto News - Published on Thu, 12 Dec 2019

Image Source: EV Battery
Up to 550 kilometres with just one battery charge: Volkswagen’s fully electric ID.3 has impressive driving dynamics and great ranges. It is the first model of a product line of vehicles based on the modular electric drive matrix. Its fast charging capability allows the ID.3 to be recharged with 100 kW charging power within 30 minutes for a range of around 290 kilometres WLTP. This is made possible by the heart of the electric vehicle: the battery. The ID.3 is fitted with a high-voltage battery system which looks similar to a bar of chocolate. Up to twelve battery modules are fitted and connected with each other inside the system. The Volkswagen Group Components plant in Brunswick will produce up to 500,000 of these energy storage devices per year in future.

The high-voltage battery system uses lithium-ion cells. 24 of these cells are currently consolidated into one battery module. The number of modules that are then put together to create a battery system is variable. This modular structure allows for maximum flexibility: if the customer requests a higher range, then more modules will be fitted to the battery system. The fundamental structure however remains the same. In the ID.3, up to twelve modules are put together via a battery connector to form a battery system. A voltage of up to 408 volts is applied in the system, which is considerably higher than that in a domestic socket, which only supplies 230 volts.

The power electronics control the high-voltage energy flow between the battery and the electric motor, converting the direct current stored in the battery to an alternating current for the traction motor. At the same time, the 12 volt direct current electrical system is supplied with low voltage using a DC/DC converter. In a normal alternating current system, the battery is charged with a maximum charging power of 11 kW and in a direct current system with a charging power of up to 125 kW.

The battery’s flat structure and design in the underbody also allows for a spacious vehicle interior between the axles. The aluminium battery housing with an integrated crash frame protects the battery and provides optimal stability as well as significant weight saving. The aerodynamics in the vehicle underbody are optimized by the solid collision protection components, also made out of aluminium, of the battery system.

Source :

Posted By : Arun Huidrom on Thu, 12 Dec 2019
Related News from Auto segment